
iOS SDK
Android SDK
Unity SDK
React Native SDK
Flutter SDK

Integration
Methods/Guides

Sign-up for a new developer account and create a new iOS app here and copy your API Key.

Install via Cocoapods (easiest)

To install

On the Build Settings tab and type in Other Linker Flags in the search field. Add the following
flags.

ObjC

We utilize Apple's Advertising ID (IDFA) to identify users. When uploading your app we recommend
that you check all the boxes to note that your app uses IDFA and receives a smooth approval
process. On the Info tab add in a Dictionary called NSAppTransportSecurity . Make sure you add this

iOS SDK
RapidoReach iOS Integration Guide
Get Your API Key

Install SDK

pod 'RapidoReachSDK', :git => 'https://github.com/skondgekar/roriossdk.git'

pod install

Flags

Set Required Build Settings

http://www.rapidoreach.com

dictionary on the Top Level Key . Inside this dictionary, add a Boolean called
NSAllowsArbitraryLoads and set it to YES. An example of your info.plist can be found here.

After you have finished modifying the project settings, open your AppDelegate.swift file and
import the RapidoReach SDK. Replace the YOUR_API_TOKEN with the actual api key found on your
app. Replace YOUR_USER_ID with your unique ID for your appuser. If you do not have a unique
user ID we recommend just using their Apple Advertising ID (IDFA) . If you utilize a server-side
callback, this is the user ID that will be passed back to you when a user earns a reward.

Next initialize the RapidoReach SDK in your applicationDidFinishLaunchingWithOptions method.

Open the .swift file of the controller where you want your users to have access to RapidoReach
Reward Center. Call the presentSurvey method when you are ready to the send the user into the
reward center where they can complete surveys in exchange for your virtual currency. We
automatically convert the amount of currency a user gets based on the conversion rate specified
in your app.

Initialize

// AppDelegate.swift

import RapidoReachSDK

// AppDelegate.swift

static let RapidoReachAPIKey = "<YOUR_API_TOKEN>"

static let RapidoReachUSER = "<YOUR_USER_ID>"

RapidoReach.shared.configure(apiKey: AppDelegate.RapidoReachAPIKey, user:

AppDelegate.RapidoReachUSER)

Reward Center

// ViewController.swift

// Import rapidoreach SDK

import RapidoReach

https://www.rapidoreach.com/docs#/iossdk?id

To ensure safety and privacy, we notify you of all awards via a server side callback. In the
developer dashboard for your App add the server callback that we should call to notify you when a
user has completed an offer. Note the user ID pass into the initialize call will be returned to you in
the server side callback. More information about setting up the callback can be found in the
developer dashboard.

The quantity value will automatically be converted to your virtual currency based on the exchange
rate you specified in your app. Currency is always rounded in favor of the app user to improve
happiness and engagement.

For security purposes we always recommend that developers utilize a server side callback,
however we also provide APIs for implementing a client side award notification if you lack the
server structure or a server altogether or want more real-time award notification. It's important to
only award the user once if you use both server and client callbacks (though your users may not
be opposed!).

// Call for AppUserId

 // Do any additional setup after loading the view, typically from a nib.

 RapidoReach.shared.delegate = self

 // Fetch userId

 RapidoReach.shared.fetchAppUserID()

// Start reward center

 RapidoReach.shared.setNavigationBarText(for: "Rapidoreach")

 RapidoReach.shared.presentSurvey()

Reward Callback

Client Side Award Callback

import RapidoReach

extension ViewController: RapidoReachDelegate {

 func didSurveyAvailable(_ available: Bool) {

 print("ROR: Surveys available "+(available ? "Available" : "Not Available"));

 }

When you initially create your app we automatically set your app to Test mode. While in test mode
a survey will always be available. Note - be sure to set your app to Live in your dashboardt before
your app goes live or you won't serve any real surveys to your users!

We provide several methods to customize the navigation bar to feel like your app.

 func didOpenRewardCenter() {

 print("didOpenRewardCenter")

 }

 func didClosedRewardCenter() {

 print("didClosedRewardCenter")

 }

 func didGetRewards(_ reward: RapidoReachReward) {

 print("RapidoReach Rewards Available: \(reward.total_rewards)")

 self.user?.rewards = reward

 self.bindReward()

 }

 func didGetError(_ error: RapidoReachError) {

 print("didGetError: "+error.localizedDescription)

 }

}

Testing SDK

Customizing SDK

RapidoReach.shared.setNavigationBarColor(for: "#00796B")

RapidoReach.shared.setNavigationBarTextColor(for: "#FFFFFF")

RapidoReach.shared.setStatusBarStyle(for: "light") // 'light' or 'dark' depending on what

color of Navigation Bar is selected

Sign-up for a new developer account and create a new Android app here and copy your API Key.

Download the latest version of the Android SDK here. Add the RapidoReach-1.0.0.aar file to your
projects "libs" folder.

Include the rapidoreach.aar, Google Play Services and androidx.appcompat in your build.gradle
file. A Google Advertising ID helps us serve offers and surveys so we recommend adding the
Google Play Services SDK to your project. Be sure your minSdkVersion is set to at least 16.

Android SDK
RapidoReach Android Integration
Guide
Get Your API Key

Download the SDK

Update your module's build.gradle file

 apply plugin: 'com.android.application'

 ...

 android {

 ...

 defaultConfig {

 ...

 minSdkVersion 16

 ...

http://www.rapidoreach.com/register
http://bitbucket.com/

Ensure that your project has access to the 'libs' file by including the following in your project level
build.gradle file.

If you use proguard in your app. Be sure to add this line to your rules file:

 }

 ...

 }

 dependencies {

 ...

 implementation 'androidx.appcompat:appcompat:1.2.0'

 implementation 'com.google.android.gms:play-services-ads:19.2.0'

 implementation (name: 'RapidoReach-1.0.0', ext: 'aar')

 }

Update your projects's build.gradle file

 buildscript...

 allprojects {

 repositories {

 jcenter()

 flatDir {

 dirs 'libs'

 }

 }

 }

Proguard

-keep class rapidoreach.com.** { *; }

Import SDK in your android activity

(MainActivity.java)
import com.rapidoreach.rapidoreachsdk.RapidoReach;

import com.rapidoreach.rapidoreachsdk.RapidoReachRewardListener;

import com.rapidoreach.rapidoreachsdk.RapidoReachSurveyAvailableListener;

import com.rapidoreach.rapidoreachsdk.RapidoReachSurveyListener;

Implement interfaces and methods
(MainActivity.java)

public class MainActivity extends AppCompatActivity implements RapidoReachRewardListener,

RapidoReachSurveyListener, RapidoReachSurveyAvailableListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public void onReward(int i) {

 }

 @Override

 public void rapidoReachSurveyAvailable(boolean b) {

 }

 @Override

 public void onRewardCenterClosed() {

 }

 @Override

In your activity overwrite the onCreate() method and initialize the RapidoReach SDK with the
initWithApiKeyAndUserIdAndActivityContext call. And implement the RapidoReach onPause() and

onResume() calls. Replace the YOUR_API_TOKEN with the actual api key found on your app. Replace
YOUR_USER_ID with your unique ID for your appuser. If you do not have a unique user ID we

recommend just using their Google Advertising ID (GPS_ID)

Next, in your activity, implement the logic to display the reward center. Call the
showRewardCenter method when you are ready to the send the user into the reward center where
they can complete surveys in exchange for your virtual currency. We automatically convert the
amount of currency a user gets based on the conversion rate specified in your app.

 public void onRewardCenterOpened() {

 }

}

Initialize RapidoReach

//initialize RapidoReach

RapidoReach.initWithApiKeyAndUserIdAndActivityContext(`YOUR_API_TOKEN`, `YOUR_USER_ID`, this);

//customize navigation header

RapidoReach.getInstance().setNavigationBarText("Demo App");

RapidoReach.getInstance().setNavigationBarColor("#211548");

RapidoReach.getInstance().setNavigationBarTextColor("#FFFFFF");

//set reward and survey status listeners

RapidoReach.getInstance().setRapidoReachRewardListener(this);

RapidoReach.getInstance().setRapidoReachSurveyListener(this);

RapidoReach.getInstance().setRapidoReachSurveyAvailableListener(this);

Reward Center

Button btn = (Button) findViewById(R.id.button);

btn.setOnClickListener(new View.OnClickListener() {

To ensure safety and privacy, we notify you of all awards via a server side callback. In the
developer dashboard for your App add the server callback that we should call to notify you when a
user has completed an offer. Note the user ID pass into the initialize call will be returned to you in
the server side callback. More information about setting up the callback can be found in the
developer dashboard.

The quantity value will automatically be converted to your virtual currency based on the exchange
rate you specified in your app. Currency is always rounded in favor of the app user to improve
happiness and engagement.

For security purposes we always recommend that developers utilize a server side callback,
however we also provide APIs for implementing a client side award notification if you lack the
server structure or a server altogether or want more real-time award notification. It's important to
only award the user once if you use both server and client callbacks (though your users may not
be opposed!).

 @Override

 public void onClick(View view) {

 Log.d(TAG, "Button is clicked");

 if (RapidoReach.getInstance().isSurveyAvailable()) {

 RapidoReach.getInstance().showRewardCenter();

 }

 }

});

Reward Callback

Client Side Award Callback

public class MyActivity extends Activity implements RapidoReachRewardListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 // initialize RapidoReach

 super.onCreate();

You can optionally listen for the onRewardCenterOpened and onRewardCenterClosed events by
implementing the RapidoReachSurveyListener interface.

RapidoReach.initWithApiKeyAndUserIdAndActivityContext("YOUR_API_TOKEN", "YOUR_USER_ID",

"YOUR_ACTIVITY");

 // set RapidoReach client-side reward listener

 RapidoReach.getInstance().setRapidoReachRewardListener(this);

 }

 // implement callback for award notification

 @Override

 public void onReward(int i) {

 Log.d(TAG, "onReward: " + i);

 }

}

Reward Center Events

public class MyActivity extends Activity implements RapidoReachSurveyListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 // initialize RapidoReach

 super.onCreate();

 RapidoReach.initWithApiKeyAndUserIdAndActivityContext("YOUR_API_TOKEN",

"YOUR_USER_ID", "YOUR_ACTIVITY");

 // set RapidoReach survey event listener

 RapidoReach.getInstance().RapidoReachSurveyListener(this);

 }

 // reward center opened. time to start earning content!

If you'd like to be notified when a survey is available you can add a listener:

 @Override

 public void onRewardCenterOpened() {

 Log.d(TAG, "onRewardCenterOpened");

 }

 // reward center closed. restart music/app.

 @Override

 public void onRewardCenterClosed() {

 Log.d(TAG, "onRewardCenterClosed");

 }

}

Survey Available Callback

When you initially create your app we automatically set your app to Test mode. While in test mode
a survey will always be available. Note - be sure to set your app to Live in your dashboard before
your app goes live or you won't serve any real surveys to your users!

We provide several methods to customize the navigation bar to feel like your app.

public class MyActivity extends Activity implements RapidoReachSurveyAvailableListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 // initialize RapidoReach

 super.onCreate();

 RapidoReach.initWithApiKeyAndUserIdAndActivityContext("YOUR_API_TOKEN",

"YOUR_USER_ID", "YOUR_ACTIVITY");

 // set RapidoReach survey available listener

 RapidoReach.getInstance().setRapidoReachSurveyAvailableListener(this);

 }

 // implement callback for survey available

 @Override

 public void rapidoReachSurveyAvailable(int surveyAvailable) {

 Log.d(TAG, "rapidoreachSurveyAvailable: " + surveyAvailable);

 }

}

Testing SDK

Customizing SDK

RapidoReach.getInstance().setNavigationBarText("Demo App");

RapidoReach.getInstance().setNavigationBarColor("#17b4b3");

RapidoReach.getInstance().setNavigationBarTextColor("#FFFFFF");

Sign-up for a new developer account and create a new Unity app here and copy your API Key.

Download the latest version of the RapidoReach Unity Plugin here.

From Unity go to Assets menu → Import package → Custom package → choose the unzipped unity
package.

Ensure the RapidoReach-1.0.0.aar and other files were successfully imported with the
RapidoReach.cs file in your "Assets/Plugins" folder.

In your player settings ensure the minimum API is set to 15 (Jelly Bean) or higher.

We recommend initializing RapidoReach as soon as possible so we can begin preparing surveys for
the user. In the Initialize method you'll set your API key and the user's ID that will be passed back

Unity SDK
RapidoReach Unity Integration
Guide
Get Your API Key

Download the Plugin

Import the Unity Package

Android

Initialize RapidoReach

into your server side callback when the user has earned currency for completing a survey.

 #if UNITY_ANDROID || UNITY_IOS

 // Your GameObject that triggers the Reward Center

 void Start()

 {

 ConfigureRapidoReach();

 }

 public void ConfigureRapidoReach()

 {

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.Initialize("d5ece53df8ac97409298325fec81f3f7", "ANDROID_TEST_ID");

 RapidoReach.SetListener(gameObject.name);

 // optional

 RapidoReach.SetNavigationBarText("RapidoReach Unity N");

 RapidoReach.SetNavigationBarColor("#211548");

 RapidoReach.SetNavigationBarTextColor("#FFFFFF");

#endif

 }

 // call this function to show reward center on button click etc

 public void showRewardCenter(){

 Debug.Log("UNITY: Calling show reward center");

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.ShowRewardCenter();

#endif

 }

 void OnReward(string quantity)

 {

 FindObjectOfType<ReceivedRewards>().GetComponent<Text>().text = quantity;

 Debug.Log("RapidoReach OnReward: " + quantity);

 }

 void OnRewardCenterOpened()

 {

 FindObjectOfType<ReceivedRewards>().GetComponent<Text>().text = "Loading ...";

A Google Advertising ID helps us serve offers and surveys so we recommend adding Google Play
Services to your project. We provide the files to pull this in for you.

Ensure the UnityPluginBridge.mm and RapidoReachSDK-Bridging-Header.h files and frameworks
folder are in your "Assets/Plugins/iOS" folder and the RapidoReach.cs file is in your
"Assets/Plugins" folder.

We recommend initializing RapidoReach as soon as possible so we can begin preparing surveys for
the user. In the Initialize method you'll set your API key and the user's ID that will be passed back
into your server side callback when the user has earned currency for completing a survey.

 Debug.Log("RapidoReach OnRewardCenterOpened!");

 }

 void OnRewardCenterClosed()

 {

 Debug.Log("RapidoReach OnRewardCenterClosed!");

 }

 void RapidoReachSurveyAvailable(string available)

 {

 Debug.Log("RapidoReach RapidoReachSurveyAvailable: " + available);

 }

 #endif

Google Play Services

iOS

Initialize RapidoReach

 #if UNITY_ANDROID || UNITY_IOS

 // Your GameObject that triggers the Reward Center

 void Start()

 {

 ConfigureRapidoReach();

 }

 public void ConfigureRapidoReach()

 {

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.Initialize("d5ece53df8ac97409298325fec81f3f7", "ANDROID_TEST_ID");

 RapidoReach.SetListener(gameObject.name);

 // optional

 RapidoReach.SetNavigationBarText("RapidoReach Unity N");

 RapidoReach.SetNavigationBarColor("#211548");

 RapidoReach.SetNavigationBarTextColor("#FFFFFF");

#endif

 }

 // call this function to show reward center on button click etc

 public void showRewardCenter(){

 Debug.Log("UNITY: Calling show reward center");

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.ShowRewardCenter();

#endif

 }

 void OnReward(string quantity)

 {

 FindObjectOfType<ReceivedRewards>().GetComponent<Text>().text = quantity;

 Debug.Log("RapidoReach OnReward: " + quantity);

 }

 void OnRewardCenterOpened()

 {

 FindObjectOfType<ReceivedRewards>().GetComponent<Text>().text = "Loading ...";

 Debug.Log("RapidoReach OnRewardCenterOpened!");

 }

 void OnRewardCenterClosed()

 {

 Debug.Log("RapidoReach OnRewardCenterClosed!");

We include a post processing script to automatically include all libraries into your project and
perform any additional configuration in the build settings. See the iOS guide if you would like to
verify your Xcode project setup.

To ensure safety and privacy, we notify you of all awards via a server side callback. This callback
will be triggered for both Android and iOS apps.

In the developer dashboard for your App add the server callback that we should call to notify you
when a user has completed an offer. Note the user ID pass into the initialize call will be returned to
you in the server side callback. More information about setting up the callback can be found in the
developer dashboard.

The quantity value will automatically be converted to your virtual currency based on the exchange
rate you specified in your app. Currency is always rounded in favor of the app user to improve
happiness and engagement.

For security purposes we always recommend that developers utilize a server side callback,
however we also provide APIs for implementing a client side award notification if you lack the
server structure or a server altogether or want more real-time award notification. It's important to
only award the user once if you use both server and client callbacks (though your users may not

 }

 void RapidoReachSurveyAvailable(string available)

 {

 Debug.Log("RapidoReach RapidoReachSurveyAvailable: " + available);

 }

 #endif

Libraries

Reward Callback

Client Side Award Callback

be opposed!).

In order to receive notifications you must implement the OnReward method on the GameObject
you'd like to receive notifications that a user earned content. Then you must register that
gameObject with the SetListener method.

Additionally you can also implement OnRewardCenterOpened and OnRewardCenterClosed to listen
to events and RapidoReachSurveyAvailable to listen to when a survey is available.

 #if UNITY_ANDROID || UNITY_IOS

 // Your GameObject that triggers the Reward Center

 void Start()

 {

 ConfigureRapidoReach();

 }

 public void ConfigureRapidoReach()

 {

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.Initialize("d5ece53df8ac97409298325fec81f3f7", "ANDROID_TEST_ID");

 RapidoReach.SetListener(gameObject.name);

 // optional

 RapidoReach.SetNavigationBarText("RapidoReach Unity N");

 RapidoReach.SetNavigationBarColor("#211548");

 RapidoReach.SetNavigationBarTextColor("#FFFFFF");

#endif

 }

 // call this function to show reward center on button click etc

 public void showRewardCenter(){

 Debug.Log("UNITY: Calling show reward center");

#if UNITY_IOS || UNITY_ANDROID

 RapidoReach.ShowRewardCenter();

#endif

 }

 void OnReward(string quantity)

When you initially create your app we automatically set your app to Test mode. While in test mode
a survey will always be available. Note - be sure to set your app to Live in your dashboardt before
your app goes live or you won't serve any real surveys to your users!

We provide several methods to customize the navigation bar to feel like your app.

 {

 FindObjectOfType<ReceivedRewards>().GetComponent<Text>().text = quantity;

 Debug.Log("RapidoReach OnReward: " + quantity);

 }

 #endif

Testing SDK

Customizing SDK

 RapidoReach.SetNavigationBarText("RapidoReach Unity N");

 RapidoReach.SetNavigationBarColor("#211548");

 RapidoReach.SetNavigationBarTextColor("#FFFFFF");

Sign-up for a new developer account and create a new app here and copy your API Key.

$ npm install @rapidoreachsdk/react-native-rapidoreach

$ yarn add react-native-webview

$ cd ios && pod install && cd .. # CocoaPods on iOS needs this extra step

We are all set up! Now let's use the module.

React Native SDK
@rapidoreachsdk/react-
native-rapidoreach
Before you start
Get your API key

Getting started

Usage
Initialize RapidoReach

First, you need to initialize the RapidoReach instance with initWithApiKeyAndUserId call.

Next, implement the logic to display the reward center. Call the showRewardCenter method when
you are ready to send the user into the reward center where they can complete surveys in
exchange for your virtual currency. We automatically convert the amount of currency a user gets
based on the conversion rate specified in your app.

To ensure safety and privacy, we recommend using a server side callback to notify you of all
awards. In the developer dashboard for your App add the server callback that we should call to
notify you when a user has completed an offer. Note the user ID pass into the initialize call will be
returned to you in the server side callback. More information about setting up the callback can be
found in the developer dashboard.

The quantity value will automatically be converted to your virtual currency based on the exchange
rate you specified in your app. Currency is always rounded in favor of the app user to improve

// Import RapidoReach native module

import RapidoReach from '@rapidoreachsdk/react-native-rapidoreach';

componentDidMount() {

 // In your app initialization, initialize RapidoReach

 RapidoReach.initWithApiKeyAndUserId('YOUR_API_TOKEN', 'YOUR_USER_ID');

}

Reward Center

onPressShowRewardCenter = () => {

 RapidoReach.isSurveyAvailable((isAvailable) => {

 // if a survey is available, show the reward center

 if (isAvailable) {

 RapidoReach.showRewardCenter();

 }

 })

}

Reward Callback

happiness and engagement.

If you do not have a server to handle server side callbacks we additionally provide you with the
ability to listen to client side reward notification.

First, import Native Module Event Emitter:

Then, add event listener for award notification (in componentWillMount , for example):

Implement the callback:

You can optionally listen for the onRewardCenterOpened and onRewardCenterClosed events that are
fired when your Reward Center modal is opened and closed.

Add event listeners for onRewardCenterOpened and onRewardCenterClosed :

Client Side Award Callback

import { RapidoReachEventEmitter } from '@rapidoreachsdk/react-native-rapidoreach';

this.onRewardListener = RapidoReachEventEmitter.addListener(

 'onReward',

 this.onReward,

);

onReward = (quantity) => {

 console.log('reward quantity: ', quantity);

}

Reward Center Events

Implement event callbacks:

If you'd like to be proactively alerted to when a survey is available for a user you can add this
event listener.

First, import Native Module Event Emitter:

Then, add event listener for award notification (in componentWillMount , for example):

Implement the callback:

this.onRewardCenterOpenedListener = RapidoReachEventEmitter.addListener(

 'onRewardCenterOpened',

 this.onRewardCenterOpened,

);

this.onRewardCenterClosedListener = RapidoReachEventEmitter.addListener(

 'onRewardCenterClosed',

 this.onRewardCenterClosed,

);

onRewardCenterOpened = () => {

 console.log('onRewardCenterOpened called!');

}

onRewardCenterClosed = () => {

 console.log('onRewardCenterClosed called!');

}

Survey Available Callback

import { RapidoReachEventEmitter } from '@rapidoreachsdk/react-native-rapidoreach';

this.rapidoreachSurveyAvailableListener = RapidoReachEventEmitter.addListener(

 'rapidoreachSurveyAvailable',

 this.rapidoreachSurveyAvailable,

);

rapidoreachSurveyAvailable = (surveyAvailable) => {

 if (surveyAvailable == "true") {

Finally, don't forget to remove your event listeners in the componentWillUnmount lifecycle method:

Please send all questions, concerns, or bug reports to admin@rapidoreach.com.

We take privacy very seriously. All data is encrypted before being sent over the network. We also
use HTTPS to ensure the integrity and privacy of the exchanged data.

Our dashboard will show metrics for sessions, impressions, revenue, and much more. We are
constantly enhancing our analytics so we can better serve your needs.

We have thousands of surveys and add hundreds more every day. Most users will have the
opportunity to complete at least one survey on a daily basis.

 console.log('rapidoreach survey is available');

 } else {

 console.log('rapidoreach survey is NOT available');

 }

}

componentWillUnmount() {

 this.onRewardListener.remove();

 this.onRewardCenterOpenedListener.remove();

 this.onRewardCenterClosedListener.remove();

 this.rapidoreachSurveyAvailableListener.remove();

}

Contact

FAQ
What do you do to protect privacy?

What kind of analytics do you provide?

What is your fill rate?

Let us know! We'd love to help ensure everything flows smoothly and help you achieve your
monetisation goals!

An example is provided on Github that demonstrates how a publisher can implement the rewarded
and/or the Offerwall approach. Upon survey completion, the publisher can reward the user.

This is just an initial version of the plugin. There are still some limitations:

You cannot pass custom attributes during initialization
No tests implemented yet
Minimum iOS is 9.0 and minimum Android version is 16

For other RapidoReach products, see RapidoReach docs.

I'm ready to go live! What are the next steps?

Following the rewarded and/or
theOfferwall approach

Limitations / Minimum
Requirements

ReactNativeSDK

A plugin for Flutter that supports rendering surveys using RapidoReach SDKs. You can install
rapidoreach flutter plugin from here

Note: RapidoReach iOS SDK utilizes Apple's Advertising ID (IDFA) to identify and retarget users
with RapidoReach surveys. As of iOS 14 you should initialize RapidoReach Flutter plugin in iOS only
if the relevant IDFA permission was granted by the user

The RapidoReach plugin must be initialized with a RapidoReach API Key. You can retrieve an API
key from RapidoReach Dashboard when you sign up and create a new app.

First, you need to initialize the RapidoReach instance with init call.

Flutter SDK
flutter_rapidoreach

Initializing the plugin

Usage
Initialize RapidoReach

// Import RapidoReach package

import 'package:rapidoreach/RapidoReach.dart';

RapidoReach.instance.init(apiKey: 'YOUR_API_TOKEN', userId: 'YOUR_USER_ID')

Next, implement the logic to display the reward center. Call the show method when you are ready
to send the user into the reward center where they can complete surveys in exchange for your
virtual currency. We automatically convert the amount of currency a user gets based on the
conversion rate specified in your app.

To ensure safety and privacy, we recommend using a server side callback to notify you of all
awards. In the developer dashboard for your App add the server callback that we should call to
notify you when a user has completed an offer. Note the user ID pass into the initialize call will be
returned to you in the server side callback. More information about setting up the callback can be
found in the developer dashboard.

The quantity value will automatically be converted to your virtual currency based on the exchange
rate you specified in your app. Currency is always rounded in favor of the app user to improve
happiness and engagement.

If you do not have a server to handle server side callbacks we additionally provide you with the
ability to listen to client side reward notification.

Implement the callback:

Reward Center

RapidoReach.instance.show(),

Reward Callback

Client Side Award Callback

RapidoReach.instance.setOnRewardListener(onRapidoReachReward);

void onRapidoReachReward(int quantity) {

 print('TR: $quantity');

}

You can optionally listen for the setRewardCenterOpened and setRewardCenterClosed events that are
fired when your Reward Center modal is opened and closed.

Add event listeners for onRewardCenterOpened and onRewardCenterClosed :

Implement event callbacks:

If you'd like to be proactively alerted to when a survey is available for a user you can add this
event listener.

First, import Native Module Event Emitter:

Implement the callback:

Reward Center Events

RapidoReach.instance

 .setRewardCenterClosed(onRewardCenterClosed);

RapidoReach.instance

 .setRewardCenterOpened(onRewardCenterOpened);

void onRewardCenterOpened() {

 print('onRewardCenterOpened called!');

}

void onRewardCenterClosed() {

 print('onRewardCenterClosed called!');

}

Survey Available Callback

RapidoReach.instance

 .setSurveyAvaiableListener(onRapidoReachSurveyAvailable);

An example is provided on Github that demonstrates how a publisher can implement the rewarded
and/or the Offerwall approach. Upon survey completion, the publisher can reward the user.

This is just an initial version of the plugin. There are still some limitations:

You cannot pass custom attributes during initialization
No tests implemented yet
Minimum iOS is 9.0 and minimum Android version is 16

For other RapidoReach products, see RapidoReach docs.

If you would like to review an example in code please review the Github project.

void onRapidoReachSurveyAvailable(int survey) {

 print('TR: $survey');

}

Following the rewarded and/or
theOfferwall approach

Limitations / Minimum
Requirements

Getting Started

